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Excavation for ISRU
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 Previous work has focused on unconsolidated material
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Review of objective
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 Can we predict what it takes to excavate this…

Instead of this…
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 High yield deposits might be in the form of harder/consolidated material 

• Mars – polyhydrated sulfates (e.g. gypsum) or mid-latitude ice

 gypsum estimate: 20% water content @ 40% abundance = 8% water available (M-WIP)

• Moon – Ice cemented regolith

The material we want might not be just loose regolith
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Gypsum vein at “homestake” -

Opportunity

Credit: Orbitec



 Terrestrial rock mining techniques may be applicable to the Moon and Mars but one 

major concern is reaction force.

• Without relying on anchoring the excavation reaction force is based upon the vehicle 

mass. (drawbar pull of ~1000s of lbf for the largest vehicles) 

 Models exist that predict the forces for rock cutting

• The top ones are: Evans, Roxborough, and Goktan and take the form of:

Why don’t we trust existing models?
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• Variables: tensile strength of rock (𝜎𝑡), 
cutting depth (d), pick tip angle (𝛼), and 

attack angle (𝛳𝐴)

• Limitations:

• Empirical tests have mostly been 

done on harder rock

• Full scale mining tests produce 

reaction forces that may exceed our 

capacity

𝐹𝐶 =
12𝜋𝜎𝑡𝑑
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 Plan overview:

• Fundamental - single pick cutting in gypsum

• Use the smallest scale picks currently available

• Instrument the pick with a 3-axis load cell

• Perform Unconfined Compressive Strength and Brazilian Tensile Strength tests on test 

articles. 

• Measure the excavation forces and cuttings volume, mass, and particle size 

distribution.

The Plan
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We will validate or extend the existing models for reduced scale 

cutting in gypsum rocks. 

Conical picks 3-axis loadcell



Gypsum Rocks
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• 2.6 tons of gypsum rock at KSC

• Thank you to Paul van Susante (MTU) 

and USG in Fort Dodge, IA 



Material characterization
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Test
Literature

(MPa)

Measured

(MPa)

Unconfined 

Compressive 

Strength (UCS)

17-29 26.93

Brazilian Tensile 

Strength (BTS)
2.3-5 3.4



Material characterization
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Test Setup
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Test Setup
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Test Setup
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Pick

3-axis loadcell

Mill mount

String encoder



Test Variables and Matrix
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 Attack angle varies from 40 –

50 degrees. 

 Depth of cut – the predicted 

highest force test was run first 

and the maximum depth of cut 

was adjusted to meet the CNC 

mill’s capacity.

 Cutting speed: Not a factor in 

the latest models but could be 

a contributor in our regime. 

 Pick Tip Angle: Limited to 3 

angles that were commercially 

available. 

 Each test was repeated 5 times.

Parameters Notation Unit Levels of parameters

1 2 3

Attack Angle ΘA Degree 40 45 50

Depth of Cut d in 0.1 0.25 0.35

Cutting Speed v in/min 30 50 100

Pick Tip Angle α degree 50 68 75

Test No Attack Angle Depth of Cut Cutting Speed Pick Tip Angle

1 40 0.1 30 50

2 40 0.25 50 68

3 40 0.35 100 75

4 45 0.1 50 75

5 45 0.25 100 50

6 45 0.35 30 68

7 50 0.1 100 68

8 50 0.25 30 75

9 50 0.35 50 50

Taguchi L9 (4^3) Orthogonal Array
Ref:http://www.mne.psu.edu/cimbala/me345/Lectures/Taguchi_orthogonal_

arrays.pdf



Normal speed video of cutting test
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5 45 0.25 100 50

Test No Attack Angle Depth of Cut Cutting Speed Pick Tip Angle



High speed video of cutting test
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Test No Attack Angle Depth of Cut Cutting Speed Pick Tip Angle

6 45 0.35 30 68



Post test
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Post test
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• 3D scanned the surface 

for excavated volume



Output data
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Cutting force comparison to theory
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Error between measured and theory
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Peak Cutting Force
Test No. Theory Actual % Difference

1 104.26 188.38 57

2 825.50 1035.15 23

3 1768.63 1151.285 42

4 163.65 291.8025 56

5 744.27 538.47 32

6 1836.73 1358.25 30

7 169.86 226.70 29

8 1157.65 894.73 26

9 1659.83 950.00 54

• Average % difference = 39%

• Goktan 2005 average % difference = 28%



Sensitivity analysis

21



Variables that affect cutting force
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Attack Angle
0.98

Depth of Cut
81.13

Cutting Speed
3.01

Pick Tip Angle
9.78

Error
5.10

Mean Cutting Force Contribution



Variables that affect normal force
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Attack Angle
28.48

Depth of Cut
41.35

Cutting Speed
0.31

Pick Tip Angle
25.23

Error
4.63

Mean Normal Force Contribution



Variables that affect cuttings volume
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Attack Angle
1.60

Depth of Cut
90.63

Cutting Speed
0.55

Pick Tip Angle
3.05

Error
4.17

Cut Volume Contribution



Deeper cuts are more efficient, but produce large particles
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Cuttings analysis
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Particle size distribution – 0.1” depth of cut

27

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.01 0.1 1 10 100

%
 f

in
er

Particle size (mm)

Particle Size Distribution
Test 7-5



Shallow cuts produce more fine particles for less energy and 

cutting force

28(lbf)



 Existing rock cutting models such as Goktan (2005) are appropriate for 

predicting low force cutting in soft rock such as Gypsum

 The trends and contributing variables as measured in this work agree with the 

existing models

 Between 6%-20% of cuttings are finer than 300μ depending on the cut 

geometry

 Shallower cuts produce less material overall per unit energy but they produce 

more material in the <300μ range for less excavation force.  

Conclusions
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 Follow-on Work: 

• Additional tests in other hard materials

 Ice-cemented Regolith

 Salem Limestone

• Multiple pick/pick spacing tests

 Determine critical crack length per material

• Develop/Test force reducing pick alternatives (i.e. percussion, cutting disks, etc.)

What’s next?
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Questions?
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Questions?


